11/25/21, 1:34 AM RePORT) RePORTER

Back to Search Results

Description

Details

Sub-Projects

Patents

Clinical Studies

News and More

<u>History</u>

Similar Projects

Development of a Universal Influenza Vaccine Against Influenza A and B Viruses

Contact PI/Project Leader Project Number 1R01Al137846-01A1 **GILL, HARVINDER SINGH**

Awardee Organization TEXAS TECH UNIVERSITY

ω. Suare ▲

Abstract Text

Development of a Universal Influenza Vaccine Against Influenza A and B Viruses Influenza virus causes widespread mortality and morbidity every year. In addition, the threat of an influenza pandemic continues to persist. For current seasonal licensed vaccines to be effective the influenza strain in the formulation should match that which is circulating in the human population. Unfortunately, making a prediction of the influenza strains that are likely to circulate in the human population in the future is not very reliable. As a result, an error in this prediction can make the vaccine ineffective. This unreliability of the vaccine exists because the vaccine is based on one of the most abundant membrane proteins called hemagglutinin found on the influenza virus surface. Because hemagglutinin changes from one strain to the next, a proper match between circulating influenza strains and that in the vaccine is important. Furthermore, because the identity of a future pandemic strain cannot be predicted, it is hard to develop a vaccine for pandemic influenza based on hemagglutinin's head region as an antigen. To overcome the limitation of the current vaccine design we propose to use highly conserved antigens to formulate an influenza vaccine. One of these conserved antigens is from the ion channel membrane protein called matrix 2 (M2). The domain of M2 exposed on the surface of the virus is called M2e, and it has remained highly conserved in human influenza A strains. By attaching consensus human M2e on the gold nanoparticle surface we have shown breadth of protection against H1N1 and H3N2 influenza A strains, and even the highly pathogenic avian influenza strain H5N1. The vaccine was however only partially protective against the highly pathogenic avian influenza A H7N9 strain. The reason is that M2e on avian and swine influenza strains shows some dissimilarity from M2e of human influenza strains. Therefore, we propose that inclusion of M2e of human, avian and swine influenza strains as the vaccine antigen will increase the breadth of protection. The second conserved antigen is an epitope from the neuraminidase membrane protein of the influenza virus. This epitope is conserved across influenza A and B strains. We hypothesize that inclusion of both M2e and the conserved neuraminidase epitope will help to design a universal influenza vaccine protective against a broad range of strains. Our specific aims are: AIM 1: Develop the multi-antigen vaccine formulation, and establish its breadth and longevity of protection in Balb/c mice. AIM 2: Characterize the role of humoral and cellular immunity in the mechanism of protection, and assess biodistribution and safety profile of the vaccine. AIM 3: Establish vaccine efficacy in ferrets, and evaluate vaccine thermal stability. The influenza vaccine designed through this research is expected to have a broad and significant impact on public health. If successful, the vaccine will offer broad protection against both influenza A and B strains, eliminating the need for seasonal vaccines, and significantly reducing the threat of pandemic outbreaks due to influenza virus.

Public Health Relevance Statement

NARRATIVE This project focuses on the development of a universal influenza vaccine that can enable protection against all influenza A and B strains, thus eliminating the need for yearly vaccinations against influenza, and the threat of influenza pandemics. Successful completion of the project may in the long run reduce much morbidity, especially amongst elderly and children.

NIH Spending Category

Biodefense Bioengineering Biotechnology Emerging Infectious Diseases Immunization Infectious Diseases Pneumonia & Influenza Influenza Nanotechnology **Prevention Vaccine Related**

Project Terms

Allergen Immunotherapy Amino Acid Sequence **Amino Acids Antibodies Antibody titer measurement Antiviral Therapy Avian Influenza B-Lymphocytes Antigens Binding Biochemistry Biodistribution Birds Blood** Cells Cellular Assay **Cellular Immunity** Child Complement Complex **Consensus Sequence** Consensus **Disease Outbreaks Elderly Enzyme-Linked Immunosorbent Assay Development Dose Epidemic Extracellular Domain** Family suidae **Ferrets Formulation Freeze Drying Epitopes Future** Hemagglutinin Gills Gold High temperature of physical object Growth Head Human **Humoral Immunities Immunity** In Vitro Inbred BALB C Mice **Inbred Mouse Immune**

Read More

RePORT) RePORTER 11/25/21, 1:34 AM

▼ Back to Search Results

Description

Sub-Projects

Publications

Patents

Outcomes

Clinical Studies

News and More

History

Similar Projects

Development of a Universal Influenza Vaccine Against Influenza A and B Viruses

Contact PI/Project Leader Project Number 1R01Al137846-01A1 **GILL, HARVINDER SINGH**

Awardee Organization TEXAS TECH UNIVERSITY

Contact Title

jennifer.gordon2@nih.gov **ASSOCIATE PROFESSOR**

harvinder.gill@ttu.edu

Organization

Department Type State Code Name **TEXAS TECH UNIVERSITY ENGINEERING (ALL TYPES)** TX

Organization Type City **Congressional District**

LUBBOCK BIOMED ENGR/COL ENGR/ENGR STA 19

Country

UNITED STATES (US)

Other Information

FOA Administering Institutes or Centers PA-18-484 NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES Study Section

Gene and Drug Delivery Systems DUNS Number Study Section[GDD] 041367053

Award Notice Date Fiscal Year 09-November-2019 2018

Date

CFDA Code 855

Project Start 12-November-

2018

Project End Date 31-October-

2023

Budget Start 12-November-

Date 2018

31-October-**Budget End Date**

2019

Project Funding Information for 2019

Total Funding Direct Costs Indirect Costs \$716,192 \$530,756 \$185,436

Year	Funding IC	FY Total Cost by IC	
2019	NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES	\$716,192	

NIH Categorical Spending

Click here for more information on NIH Categorical Spending

Funding IC	FY Total Cost by IC	NIH Spending Category
NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES	\$716,192	Biodefense; Bioengineering; Biotechnology; Emerging Infectious Diseases; Immunization; Infectious Diseases; Influenza; Nanotechnology; Pneumonia & Influenza; Prevention; Vaccine Related;

品 Sub Projects

No Sub Projects information available for 1R01Al137846-01A1

Publications

No Publications available for 1R01Al137846-01A1

Patents

No Patents information available for 1R01Al137846-01A1

2/3

11/25/21, 1:34 AM RePORT) RePORTER

∢ Back to Search Results

Description

Details

Sub-Projects

Publications

Patents

Outcomes

Clinical Studies

News and More

History

Similar Projects

Development of a Universal Influenza Vaccine Against Influenza A and B Viruses

Contact PI/Project Leader Project Number 1R01Al137846-01A1 **GILL, HARVINDER SINGH**

Awardee Organization TEXAS TECH UNIVERSITY

No Outcomes available for 1R01Al137846-01A1

Clinical Studies

No Clinical Studies information available for 1R01Al137846-01A1

News and More

Related News Releases

No news release information available for 1R01Al137846-01A1

(□) History

No Historical information available for 1R01AI137846-01A1

Similar Projects

No Similar Projects information available for 1R01Al137846-01A1