11/29/21, 3:22 AM RePORT > RePORTER

Back to Search Results

Description

Details

Sub-Projects

1 Oub i iojects

Publications

' Patents

Outcomes

Clinical Studies

News and More

(L) History

Similar Projects

Structure-based Vaccine Design for CCHFV

Project Number Contact PI/Project Leader

1R01AI152246-01 MCLELLAN, JASON SCOTTOther

PIs

Awardee Organization
UNIVERSITY OF TEXAS, AUSTIN

Ø. Suare ▲

Abstract Text

Project Summary/Abstract Crimean-Congo hemorrhagic fever virus (CCHFV) causes a life-threatening tick-borne disease in humans. The disease presents as a severe form of hemorrhagic fever with a case fatality rate of 10-40%. CCHFV outbreaks have spanned a wide geographic area ranging from Western and Central Asia, the Middle East, Africa and Southern Europe. Increasing global temperatures, migratory birds, and the international livestock trade have all potentially contributed toward the spread of Hyalomma ticks—the primary vector for CCHFV. Expanding endemic zones, widespread morbidity and significant mortality make CCHFV an acute threat to public health and thus is listed as a NIAID Category A priority pathogen. The viral genome encodes a glycoprotein precursor that is processed into two structural glycoproteins—Gn and Gc—and two secreted glycoproteins—a mucin-like domain and GP38. Protective antibodies have been isolated that target Gc or GP38, suggesting that these two proteins should be given priority for vaccine development. Here we propose to engineer Gc- and GP38-based immunogens that focus the immune response onto broadly conserved epitopes that are capable of eliciting protective antibody responses. To accomplish our goal, we will structurally characterize CCHFV glycoproteins and their interactions with human-derived antibodies, rationally engineer vaccine antigens based in part on the structural information, and characterize the immune responses elicited by these antigens in animal models. These results will be used to guide further improvements of the immunogens, including display on self-assembling multi-valent nanoparticles, and the most promising candidates will be evaluated in a lethal murine model of CCHFV challenge. Given our expertise, unique reagents, and preliminary data, we are confident that we can deliver a state-of-the-art subunit vaccine candidate with the potential to induce cross-reactive protective antibodies, thereby satisfying an unmet need against this NIAID Category A tick-borne pathogen.

Public Health Relevance Statement

Project Narrative Crimean-Congo hemorrhagic fever is the most widespread tick-borne viral disease in humans with case-fatality rates of 10–40%. Here we propose to employ structure-based vaccine design principles to engineer immunogens that induce cross-reactive protective antibodies. Our studies will provide insight into the structures and antigenicity of CCHFV glycoproteins and will deliver a bona fide vaccine candidate against a NIAID Category A pathogen.

NIH Spending Category

Biodefense Bioengineering Biotechnology Emerging Infectious Diseases Immunization

Infectious Diseases Nanotechnology Prevention Vaccine Related Vector-Borne Diseases

Project Terms

Acute Africa Animal Model Antibodies Antibody Response Antibody Therapy Antigens Antiviral Agents Case Fatality Rates Categories Category A pathogen Cells **Central Asia Chimeric Proteins Complex** Coronavirus **Crimean Hemorrhagic Fever Crimean-Congo Hemorrhagic Fever Virus** Crystallization **Data Protection** Data **Disease Disease Outbreaks Engineering Epitope Mapping Evaluation Dyes Epitopes Family Filovirus Funding Glycoproteins** Goals Genome Geographic Locations Human IFNAR1 gene Immune response Incidence Immunocompromised Host **Immunologics** Maps International Laboratories **Laboratory Animal Models** Life Livestock **Read More**

Read More

Contact PI/ Project Leader

Title

ASSOCIATE PROFESSOR

Other PIs
Name

CHANDRAN, KARTIK 🗗

Program Official

Name

ALARCON, RODOLFO M

Contact

rodolfo.alarcon@nih.gov

Thank you for your feedback!

RePORT) RePORTER 11/29/21, 3:22 AM

▼ Back to Search Results

(≡) <u>Description</u>

Details

Sub-Projects

Publications

Patents

Outcomes

Clinical Studies

News and More

History

Similar Projects

Structure-based Vaccine Design for CCHFV

Project Number Contact PI/Project Leader 1R01AI152246-01 MCLELLAN, JASON SCOTTOther

<u>Pls</u>

UNIVERSITY OF TEXAS, AUSTIN BIOLOGY TX

City Organization Type **Congressional District AUSTIN** SCHOOLS OF ARTS AND SCIENCES 10

Country

Other Information

UNITED STATES (US)

FOA Administering Institutes or Centers 25-June-2020 **Project Start NATIONAL INSTITUTE OF ALLERGY** RFA-AI-19-037

Date AND INFECTIOUS DISEASES Study Section

Project End Date 31-May-2025 Special Emphasis Panel ZAI1 FDS-M **DUNS Number** CFDA Code 170230239 855 25-June-2020

Budget Start Fiscal Year Award Notice Date Date

2020 25-June-2020 **Budget End Date** 31-May-2021

Project Funding Information for 2020

Indirect Costs Total Funding Direct Costs \$441,966 \$351,007 \$90,959

Funding IC FY Total Cost by IC Year NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES 2020 \$441,966

NIH Categorical Spending

Click here for more information on NIH Categorical Spending

Awardee Organization

UNIVERSITY OF TEXAS, AUSTIN

Funding IC	FY Total Cost by IC	NIH Spending Category
NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES	\$441,966	Biodefense; Bioengineering; Biotechnology; Emerging Infectious Diseases; Immunization; Infectious Diseases; Nanotechnology; Prevention; Vaccine Related; Vector-Borne Diseases;

品 Sub Projects

No Sub Projects information available for 1R01AI152246-01

Publications

No Publications available for 1R01AI152246-01

∀ Patents

No Patents information available for 1R01AI152246-01

Outcomes

The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.

No Outcomes available for 1R01Al152246-01

11/29/21, 3:23 AM RePORT) RePORTER

∢ Back to Search Results

Description

Details

Sub-Projects

Publications

Patents

Outcomes

Clinical Studies

News and More

<u>History</u>

Similar Projects

Structure-based Vaccine Design for CCHFV

Project Number Contact PI/Project Leader 1R01Al152246-01

MCLELLAN, JASON SCOTTOther <u>Pls</u>

Awardee Organization UNIVERSITY OF TEXAS, AUSTIN

News and More

Related News Releases

No news release information available for 1R01AI152246-01

(□) History

No Historical information available for 1R01Al152246-01

Similar Projects

No Similar Projects information available for 1R01Al152246-01