Search Results Project Details

Ø Share →

Back to Search Results

Description

Publications

Patents

Outcomes

Clinical Studies

News and More

(History

Similar Projects

Coronavirus antiviral nucleoside analogs: inhibition and reduced susceptibility

Project Number 5F31AI133952-03

Contact PI/Project Leader **AGOSTINI, MARIA**

Awardee Organization VANDERBILT UNIVERSITY

(≡) Description

Abstract Text

PROJECT SUMMARY Coronaviruses (CoVs) are a family of positive-sense RNA viruses that cause respiratory illnesses in humans ranging from the common cold to severe and lethal disease. The emergence of SARS-coronavirus (CoV) in 2002 and the continued circulation of MERS-CoV emphasize the capacity of CoVs to cause new zoonotic infections with pandemic potential. Despite the high mortality rates of these infections, no therapeutics or vaccines against any CoVs are currently available. Broadly active antiviral nucleoside analogs such as Ribavirin (RBV) are ineffective against CoVs. This limitation is attributed to a unique proofreading exoribonuclease (ExoN) in nonstructural protein 14 (nsp14-ExoN) that aids the RNA-dependent RNA polymerase (RdRp) encoded in nonstructural protein 12 (nsp12-RdRp) in high fidelity replication of these large positivestrand RNA viruses. We have identified two antiviral nucleoside analogs, GS-5734 and EIDD-1931, in collaboration with Gilead Sciences and the Emory Institute for Drug Development, respectively, which are broadly active against multiple CoVs with minimal cytotoxicity. In addition, we have identified two mutations within the predicted fingers domain of the nsp12-RdRp that reduce susceptibility to GS-5734, a C-adenosine nucleoside analog. The goals of this proposal are to define mechanisms through which these antiviral compounds inhibit CoV replication and determine the impact of resistance mutations on viral fitness, replication fidelity, and nucleotide selectivity. In Specific Aim 1, the basis of GS-5734 and EIDD-1931-mediated inhibition of CoV replication will be defined using deep sequencing, RT-qPCR, and Northern blot analysis to distinguish between the two most common mechanisms of antiviral action displayed by nucleoside analogs: chain termination and lethal mutagenesis. Experiments proposed in Specific Aim 2 will determine the impact of mutations that reduce susceptibility to GS-5734 and EIDD-1931 on coronavirus replication fidelity, viral fitness, and susceptibility to other nucleoside analogs. Together, these studies will probe mechanisms of GS-5734 and EIDD-1931 inhibition of CoV replication and explore the potential for these antiviral nucleoside analogs to individually and cooperatively serve as potent therapies against existing and emerging CoVs. This research also will inform the development of broadly active and complementary antiviral approaches to combat CoV infections. Finally, these studies will utilize GS-5734 and EIDD-1931 as tools to better understand mechanisms and viral mediators of CoV replication efficiency and fidelity.

Public Health Relevance Statement

PROJECT NARRATIVE Coronaviruses are a family of positive-sense RNA viruses that cause human illnesses ranging from the common cold to severe and lethal respiratory diseases, including as severe acute respiratory syndrome (SARS) and Middle Eastern respiratory syndrome (MERS). The continued emergence of zoonotic coronaviruses into human populations represents a significant threat to global human health, and vaccines and antivirals for coronaviruses have, thus far, remained elusive. The proposed research will investigate newly identified antiviral nucleoside analogs that are active against coronaviruses to better understand their mechanisms of action and impact of reduced viral susceptibility, information that will aid in the clinical development of these compounds for treatment of coronavirus infections, inform understandings of high-fidelity coronavirus replication and illuminate viral targets for future drug discovery.

NIH Spending Category

Biodefense Emerging Infectious Diseases Infectious Diseases Lung

Project Terms

5'-exoribonuclease Adenosine **Affect Antiviral Agents Antiviral Therapy Blood Circulation Collaborations Common Cold** Complex Coronavirus **Coronavirus Infections Defective Viruses** Development Disease **Excision Exons Exoribonucleases Family Fingers Future** Genome Goals HIV Herpesviridae Health **Hepatitis B Virus Hepatitis C virus** Human Individual Infection Institutes Interruption **Life Cycle Stages** Lung diseases Mediator of activation protein Mediating Middle East Respiratory Syndrome Coronavirus Modeling Murine hepatitis virus

Read More

Details

Contact PI/ Project Other Pls **Program Official**

Leader Not Applicable Name

STEMMY, ERIK J Name

AGOSTINI, MARIA Contact Title

View Email Contact

View Email

Organization

Department Type State Code Name **VANDERBILT UNIVERSITY PATHOLOGY** TN

City Organization Type Congressional District

SCHOOLS OF MEDICINE Nashville 05

Country **UNITED STATES (US)**

Other Information

FOA Administering Institutes or **Project Start** 30-

PA-16-309 Centers Date September-**NATIONAL INSTITUTE OF**

Study Section 2017 **ALLERGY AND INFECTIOUS** Special Emphasis **DISEASES**

Panel ZRG1-F13-C(20)L 31-October-Project End **DUNS Number CFDA Code** Date 2019 **Award Notice**

965717143 Date **Budget Start** 30-Fiscal Year 05-August-September-

2019 2019

Budget End 31-October-Date 2019

Date

Project Funding Information for 2019

Total Funding **Indirect Costs Direct Costs** \$4,919 \$4,919 Thank you for your feedback!

Year	Funding IC	
2019	NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES	\$4 919

NIH Categorical Spending	Click here for more inforr	nation on NIH Catego	<u>rical Spending</u>
Funding IC		FY Total Cost by IC	NIH Spending Category
NATIONAL INSTITUTE OF ALLERGY AN	ND INFECTIOUS DISEASES	\$29,698	Biodefense; Emerging Infectious Diseases; Infectious Diseases; Lung;

品 Sub Projects

No Sub Projects information available for 5F31Al133952-03

D Publications								<u>+</u>	Export
Journal (Link to PubMed abstract)	Authors	Publication Year	Sim Pub	ilar licatio	ons	Cite	edBy	iCite	RCR
The coronavirus proofreading e	exoribonucleas	e mediates e	xten	sive	viral	rec	ombi	natior	۱.
PLoS pathogens 2021 01; 17 (1) e1000226	Gribble,	2021	IM	G		<u> </u>	G	iC ite	18.03
Journal (Link to PubMed abstract)	Author	s			Pub Yea		tion		imilar ublicati
An orally bioavailable broad-sp epithelial cell cultures and mul				CoV-2	in h	um	an ai	rway	
Science translational medicine 2020 04 29; 12 (541)	Sheahan, Timothv P:	2020	ĬM	G		<u></u>	G	iC ite	88.86
	View All								
Fitness Barriers Limit Reversio	n of a Proofrea	ding-Deficie	nt Co	orona	virus	5.			
Journal of virology 2019 10 15; 93 (20)	Graepel, Kevin W; Agostini, Maria L; Lu, Xiaotao; Sexton, Nicole R; Denison, Mark R	2019		G		<u></u>	G	iC ite	0.60
Small-Molecule Antiviral β-d-N Coronavirus with a High Geneti			a Pr	oofre	eadin	g-Iı	ntact		
<u>Journal of virology 2019 12 15; 93</u> (24).	Agostini, Maria L: Pruiissers.	2019	M	G		<u></u>	G	iC ite	8.79
	View All								

`**⇔** Patents

No Patents information available for 5F31AI133952-03

No Outcomes available for 5F31Al133952-03

Clinical Studies

No Clinical Studies information available for 5F31Al133952-03

News and More

Related News Releases

News	Journal Article	PubMed Abstract
Findings may help close door on COVID-19		January 2021

(History

Total project funding amount for 3 projects is \$62,851*

* Only NIH,	CDC	and	FDA	funding	data

Project Number	Sub	Principal Investigator(s)/ Project Leader(s)	Organiza	tion		Fiscal Year	Admin IC
Number	Pi	oject Leader(s)		real	Ю	10	IC

Coronavirus antiviral nucleoside analogs: inhibition and reduced susceptibility

5F31Al133952-	▲ AGOSTINI,	VANDERBILT	2019	NIAID	NIAID	\$4,919
03	MARIA 🖼	LINIVERSITY				

Coronavirus antiviral nucleoside analogs: inhibition and reduced susceptibility

5F31AI133952-	AGOSTINI,	VANDERBILT	2018	NIAID	NIAID	\$29,206
<u>02</u>	MARIA 🗗	UNIVERSITY				

Coronavirus antiviral nucleoside analogs: inhibition and reduced susceptibility

<u>1F31Al133952-</u>	AGOSTINI,	VANDERBILT	2017	NIAID	NIAID	\$28,726
<u>01</u>	MARIA 🗗	UNIVERSITY				

		SIEVEN GART	NEINTUCKT				•
SARS	-CoV-2 and Autophagy						
342	1R21Al158134-01	▲ JACKSON, WILLIAM T ☑	UNIVERSITY OF MARYLAND BALTIMORE	2020	NIAID	NIAID	
	op Potent Methyltransfe S-CoV-2)	erase Inhibitors to Targ	et Severe Acute	Respira	tory Syr	idrome	
407	1R21Al158176-01	<u>* ZHENG, Y. GEORGE</u>	UNIVERSITY OF GEORGIA	2021	NIAID	NIAID	

Development of Broad-Spectrum Antiviral Therapeutics by Destabilizing the Main Protease Coronaviruses

391	1R21AI158210-01	<u> TANG, WEIPING</u>	UNIVERSITY OF	2020	NIAID	NIAID
			WISCONSIN-			
			MADISON			

508ch Score	5R21Al145372-02 Project Number	Sub Principal Convertigator(s)/ Project Leader(s)	UNIV OF NORTH CAROLINA CHAPEL HILL	202 dal Year	MIAIDn IC	IC IC
lmmur	nomodulatory effect	s of coronavirus membrar	ne proteins E, M,	and S.		
336	1R21AI158229-01	▲ STEPHENS, EDWARD BRICE ☐ KALAMVOKI, MARIA ☐	UNIVERSITY OF KANSAS MEDICAL CENTER	2020	NIAID	NIAID
Mecha	nisms and function	al implications of SARS-C	oV-2 mRNA capp	oing and	modific	cation.
	anisms and function 1R21AI158335-01	al implications of SARS-C * WILUSZ, JEFFREY * GEISS, BRIAN **	oV-2 mRNA capp COLORADO STATE UNIVERSITY	oing and	modific NIAID	cation.
358	1R21Al158335-01	* <u>WILUSZ, JEFFREY</u> □	COLORADO STATE UNIVERSITY	2020	NIAID	NIAID
358	1R21Al158335-01	* WILUSZ, JEFFREY ☐ GEISS, BRIAN ☐	COLORADO STATE UNIVERSITY	2020	NIAID	NIAID
358 Advan 456	1R21Al158335-01 cing the developme 1R01Al158569-01	# WILUSZ, JEFFREY ☐ GEISS, BRIAN mt of a novel class of small	COLORADO STATE UNIVERSITY Il molecules for to STANFORD UNIVERSITY	2020	NIAID	NIAID onaviru