RePORT) RePORTER 11/25/21, 1:35 AM

Search Results **Project Details**

Ø Share **▼**

Back to Search Results

Description

Sub-Projects

Publications

Patents

<u>Outcomes</u>

News and More

<u>History</u>

Similar Projects

Controlling the Virulence Genome of V. cholerae

Project Number 5R21AI137546-02 **Contact PI/Project Leader DAVIES, BRYAN WILLIAM**

Awardee Organization UNIVERSITY OF TEXAS, AUSTIN

Abstract Text

Project Summary. Vibrio cholerae is the etiological agent of the severe diarrheal disease cholera that infects hundreds of thousands of people each year. Benign V. cholerae bacteria emerge as pandemic pathogens by horizontally acquiring a specific set of genetic elements that encode all major V. cholerae virulence factors. We understand the role of these acquired elements in disease, but we do not understand what uniquely allows V. cholerae to acquire and integrate control of their actions in the first place. Our objective in this proposal is to characterize the role of the first identified Vibrio specific protein affecting the ability of V. cholerae to broadly acquire and control its virulence systems. This proposal offers a major leap forward in understanding V. cholerae specific factors that allow it to acquire, control, and maintain the genetic elements needed to transition from benign strain to pandemic pathogen. Our results are expected to have a positive vertical impact since it will further our understanding of biology that defines the potential of V. cholerae strains to become pathogenic, which will offer insights into the selective advantage of different V. cholerae strains and suggest new paths to environmental surveillance, prevention, and treatment options. !!

Public Health Relevance Statement

Project Narrative. Vibrio cholerae is the etiological agent of cholera, a lethal diarrheal disease that infects hundreds of thousands of people every year. We understand the role of acquired genetic virulence elements in disease, but we do not understand what uniquely allows V. cholerae to acquire and integrate their actions in the first place. Our objective in this proposal is to characterize the role of the first identified Vibrio specific protein affecting the ability of V. cholerae to broadly acquire and control its virulence systems.!

NIH Spending Category

Biodefense Emerging Infectious Diseases Genetics Infectious Diseases Prevention Rare Diseases

Project Terms

Affect Animal Model Binding Biology Automobile Driving Bacteria Benign ChIP-seq **Disease Outbreaks** Cholera Chromosomes DNA **DNA Binding Disease Elements Gene Expression Regulation Genetic** Genome In Vitro Infection **Etiology** Goals Genes Molecular Infection prevention Knowledge **Maintenance** Mediating **Mobile Genetic Elements Pathogenicity** Prevention **Proteobacteria** Regulation **Process Proteins** Role Surveys Vibrio cholerae **Virulence Factors System Testing Vibrio** Virulence Virulent cohesion pandemic disease diarrheal disease genetic element genome-wide insight pathogen prevent transcription factor transcriptome sequencing uptake

Name

Contact PI/ Project Leader

DAVIES, BRYAN WILLIAM

Other Pls

Program Official

Name

Not Applicable

Contact rhall@niaid.nih.gov

HALL, ROBERT H

Thank you for your feedback!

ASSISTANT PROFESSOR

Organization

Department Type State Code Name **BIOLOGY UNIVERSITY OF TEXAS, AUSTIN** TX

Congressional District City **Organization Type**

AUSTIN SCHOOLS OF ARTS AND SCIENCES

Country

UNITED STATES (US)

Other Information

FOA Administering Institutes or Centers **Project Start** 02-May-2018 **NATIONAL INSTITUTE OF ALLERGY** PA-16-161 Date AND INFECTIOUS DISEASES Study Section **Project End Date** 30-April-2021 <u>Special Emphasis Panel[ZRG1-IDM-B(80)S]</u> **DUNS Number** CFDA Code

170230239 855 **Budget Start** 01-May-2019

Fiscal Year Award Notice Date Date

2019 04-April-2019 **Budget End Date** 30-April-2021

Project Funding Information for 2019

Total Funding Direct Costs Indirect Costs \$225,710 \$150,000 \$75,710

Year **Funding IC FY Total Cost by IC** 2019 NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES \$225,710

NIH Categorical Spending

Click here for more information on NIH Categorical Spending

Funding IC	FY Total Cost by IC	NIH Spending Category
NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES		Biodefense; Emerging Infectious Diseases; Genetics; Infectious Diseases; Prevention; Rare Diseases;

品 Sub Projects

No Sub Projects information available for 5R21Al137546-02

Publications

No Publications available for 5R21Al137546-02

Patents

No Patents information available for 5R21Al137546-02

Outcomes

The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.

No Outcomes available for 5R21Al137546-02

Clinical Studies

11/25/21, 1:35 AM RePORT) RePORTER

News and More

Related News Releases

No news release information available for 5R21Al137546-02

← History

No Historical information available for 5R21Al137546-02

> Similar Projects

No Similar Projects information available for 5R21Al137546-02